

IEGULDĪJUMS TAVĀ NĀKOTNĒ

Pētījums

Nr. 4.5 "Tehnoloģiskie pētījumi un silīcija ražošana ar diametru līdz 100 mm izmantošanai vājstrāvas un lieljaudas mikroelektronikas cietvielu ierīcēs"

MAŠĪNBŪVES KOMPETENCES CENTRS

2021.gads

Anotācija.

AS ALFA RPAR ir veikusi firmas KEPP 4N0 3-9 460 un 4P1 7-13 460-20-5 monokristāliskā silīcija plāksnīšu novērtēšanu.

Tika salīdzinātas firmas KEPP un firmas TOPSIL Semiconductor Materials SA silīcija plāksnīšu elektrofizikālās īpašības. AS ALFA RPAR jau ilgstoši savā ražošanas procesā izmanto firmas TOPSIL Semiconductor Materials SA silīcija plāksnītes.

Pētījuma laikā:

1. Veikta monoklistāliskā silīcija plāksnīšu leģējošā piemaisījuma vienmērīguma salīdzinošā novērtēšana (pēc īpatnējās pretestības).

2. Veikta monokristāliskā silīcija plāksnīšu nepamata lādiņnesēju dzīves ilguma salīdzinošā novērtēšana.

3. Pēc silīcija plāksnīšu termiskās oksidēšanas veikta Si – SiO₂ starpslāņa robežas dažu īpašību salīdzinošā novērtēšana.

4. Monoklistāliskā silīcija plāksnīšu kvalitātes kompleksai novērtēšanai izstrādāts testa modulis (speciāla tranzistoru struktūra).

Izgatavota eksperimentālā partija. Veikta voltampēru raksturlīkņu un testa tranzistoru struktūras parametru salīdzinošā novērtēšana.

5. Lai veiktu monokristāliskā silīcija plāksnītēs skābekļa, oglekļa, dzelzs daudzuma novērtēšanu, tika veikti mērījumi ar ToF-SIMS (Time-of-flight Secondary Ion Mass spectrometry) metodi.

6. Izgatavotas mikroshēmas un tranzistori – silīcija kvalitātes novērtēšanai gala produktos.

1. Salīdzināmo plāksnīšu specifikācijas.

KEPP firmas monokristāliskā silīcija plāksnīšu kvalitāte tika vērtēta, salīdzinot to raksturlielumus ar Topsil Semiconductor Materials SA firmas plāksnītēm, kuras AS ALFA RPAR jau ilgāku laiku izmanto mikroierīču ražošanā.

Topsil Semiconductor Materials SA n-tipa plāksnītes specifikācija

PRIME SILICON WAFERS

Details of specification

: CZ Material Orientation : 100 : 0.0 +/-.5 Off degree Type/Dopant : n / Phosphorus Resistivity Ω cm : $3 \div 9$ RRV % : < 15 (ASTM plan B) Oxygenat/cm3 : < 9 x 10-17 Diameter mm : 100 +/- 0.5 Thickness µm : 460 +/- 20 TTV μm < 10 : WARP µm : $<\!40$ Flats SEMI : Primary flat location : 110 +/- degree Primary flat length mm : 32.5 ± -2.5 Secondary flat location : 180 +/- 5 degrees from Primary Flat Secondary flat length mm : 18 +/- 2 Finish : Polished / Etched Backside Sealing Å : none Edge rounding : SEMI M1 Particles: $\leq 20 @ 0.3 \ \mu m$ Visual defects: none (visually perfect) Other : According to Semi standards

Topsil Semiconductor Materials SA p-tipa plāksnītes specifikācija

PRIME SILICON WAFERS

Details of specification

Material	: CZ
Orientation	: 111
Off degree	: 4.0 +/- 0.5 toward 110 plane
Type/Dopant	: p / Boron
Resistivity Ω cr	n: 7 ÷ 13
RRV %	: <10 (ASTM plan B)
Oxygen at/cm3	$: < 9 \ge 10-17$
Diameter mm	: 100 +/- 0.5
Thickness µm	: 460 +/- 20
TTV μm	: ≤5
WARP µm	:≤30
Flats	SEMI
Primary flat loca	tion : $110 + - 0.5$ degree

Primary flat length mm : 32.5 + - 2.5Secondary flat location : none Secondary flat length mm : N/A Finish : Polished / Etched Backside Sealing Å : none Edge rounding: 20 degrees SEMI M1 Particles: $\leq 20 @ 0.3 \ \mu m$ Visual defects: none (visually perfect) Other : According to Semi standards **KEPP** firmas 4N0 3-9 460 n-tipa plāksnītes specifikācija Diameter : 100 + -0.5 mmType/Dopant : n / Phosphorus Orientation : 100 Resistivity Ω cm : $3 \div 9$ Finish : Polished / Etched Thickness: 460 + 20 um **KEPP** firmas 4P1 7-13 460-20-5 p-tipa plāksnītes specifikācija Diameter : 100 + -0.5 mm Type/Dopant : p / Boron Orientation : 100 Resistivity Ω cm : $7 \div 13$ Finish : Polished / Etched Thickness: 460 + 20 um

2. Monokristāliskā silīcija plāksnīšu leģējošā piemaisījuma vienmērīguma salīdzinošā novērtēšana.

Salīdzināšanai ir izraudzīta visas silīcija plāksnītes virsmas pārbaude ar četru zonžu metodi. Virsmas pretestības Rs un plāksnītes biezuma d mērījumi tika veikti sešpadsmit punktos pa vertikālo «a» un horizontālo «b» diametru (1.attēls).

No katras partijas plāksnītes tika ņemtas izmantojot nejaušības metodi. Pētījumā tika salīdzinātas desmit katra veida plāksnītes.

 Īpatnējā pretestība ρ tika noteikta kā: $\rho = Rs \cdot d.$

Virsmas pretestība Rs tika mērīta ar iekārtu Jandel ASMAT (Anglija). Mērījumu precizitāte ir 10%. Mērījumu rezultāti ir doti 1., 2.tabulā, grafikos un histogrammās.

1.att. Silīcija plāksnītes shematiskais rasējums.

Wafer	Surface resistivity Rs, . Ω /sq ("a" and "b" diameters)									Wafer thickness, um		Re	ρ (medium). Ω cm , through diameter	ρ (medium). <u>1</u> 2 cm , through wafer						
1	а	269	255	256	250	256	256	259	259	465	12,51	11,86	11,9	11,63	11,9	11,9	12,04	12,04	11,97	12
1	b	259	261	260	255	259	261	256	258	465	12,04	12,14	12,09	11,86	12,04	12,14	11,9	12	12,03	12
2	а	247	246	241	244	245	248	248	252	464	11,46	11,41	11,18	11,32	11,37	11,51	11,51	11,69	11,43	11.44
2	b	249	243	245	244	243	247	249	253	464	11,55	11,28	11,37	11,32	11,28	11,46	11,55	11,74	11,44	11,44
3	а	250	247	254	253	249	248	253	253	465	11,63	11,49	11,81	11,76	11,58	11,53	11,76	11,76	11,67	11.61
5	b	250	248	249	245	246	249	249	252	465	11,63	11,53	11,58	11,39	11,44	11,58	11,58	11,72	11,56	11,01
4	а	244	243	245	241	245	243	248	251	466	11,37	11,32	11,42	11,23	11,42	11,32	11,56	11,7	11,42	11 38
7	b	246	244	243	239	242	243	243	248	466	11,46	11,37	11,32	11,14	11,28	11,32	11,32	11,56	11,35	11,50
5	а	255	253	251	252	251	251	254	261	467	11,91	11,82	11,72	11,77	11,72	11,72	11,86	12,19	11,84	11.84
5	b	254	252	253	252	253	253	254	258	467	11,86	11,77	11,82	11,77	11,82	11,82	11,86	12,05	11,84	11,04
6	а	254	248	247	252	246	248	248	254	466	11,84	11,56	11,51	11,74	11,46	11,56	11,56	11,84	11,63	11.3
Ů	b	148	249	247	244	245	250	248	252	466	6,9	11,6	11,51	11,37	11,42	11,65	11,56	11,74	10,97	11,5
7	а	258	257	257	255	258	255	256	263	464	11,97	11,92	11,92	11,83	11,97	11,83	11,88	12,2	11,94	11.91
	b	256	255	259	255	253	256	258	257	464	11,88	11,83	12,02	11,83	11,74	11,88	11,97	11,92	11,88	11,91
8	а	260	262	263	264	262	261	260	265	468	12,17	12,26	12,31	12,36	12,26	12,21	12,17	12,4	12,27	12.26
0	b	265	263	262	264	262	258	262	258	468	12,4	12,31	12,26	12,36	12,26	12,07	12,26	12,07	12,25	12,20
9	а	258	258	256	255	256	258	262	263	467	12,05	12,05	11,96	11,91	11,96	12,05	12,24	12,28	12,06	12 12
	b	262	262	263	256	260	261	262	260	467	12,24	12,24	12,28	11,96	12,14	12,19	12,24	12,14	12,18	12,12
10	а	246	245	251	246	244	245	246	249	466	11,46	11,42	11,7	11,46	11,37	11,42	11,46	11,6	11,49	11 47
10	b	248	243	248	242	248	246	245	247	466	11,56	11,32	11,56	11,28	11,56	11,46	11,42	11,51	11,46	11,77

Table 1. Rs and ρ distibution for 4P1B X09149-0 (TOPSIL) wafers

Resistivity ρ distribution vs wafers 4P1B X09149-0 (TOPSIL)

Table 2. Rs and ρ distibution for 4P1 7-13 460-20-5 (KEPP)

Wafer	Surface resistivity Rs, . Ω /sq ("a" and "b" diameters)								ters)	ufer thickness, um		Re	medium). Ω cm rough diameter	medium). Ω cm through wafer						
										Wa		ρ(, tt	ь (
1	а	188	185	178	178	183	182	182	182	492	9,25	9,1	8,76	8,76	9	8,95	8,95	8,95	8,97	8.92
	b	178	178	180	178	182	181	181	184	492	8,76	8,76	8,86	8,76	8,95	8,91	8,91	9,05	8,87	-,
2	а	189	190	190	187	186	197	195	193	493	9,32	9,37	9,37	9,22	9,17	9,71	9,61	9,51	9,41	9 39
2	b	190	190	188	189	188	192	191	192	493	9,37	9,37	9,27	9,32	9,27	9,47	9,42	9,47	9,37	,55
3	a	197	199	196	193	198	196	199	206	477	9,4	9,49	9,35	9,21	9,44	9,35	9,49	9,83	9,44	0.30
3	b	193	195	197	194	195	194	197	200	477	9,21	9,3	9,4	9,25	9,3	9,25	9,4	9,54	9,33	9,39
4	а	186	183	181	180	182	185	185	184	485	9,02	8,88	8,78	8,73	8,83	8,97	8,97	8,92	8,89	0.05
4	b	182	182	181	180	180	182	183	184	485	8,83	8,83	8,78	8,73	8,73	8,83	8,88	8,92	8,81	8,85
F	а	200	195	195	193	195	191	191	193	482	9,64	9,4	9,4	9,3	9,4	9,21	9,21	9,3	9,36	0.26
2	b	197	197	197	197	190	191	192	192	482	9,5	9,5	9,5	9,5	9,16	9,21	9,25	9,25	9,36	9,36
	а	204	202	197	198	196	197	197	199	475	9,69	9,6	9,36	9,41	9,31	9,36	9,36	9,45	9,44	0.44
6	b	200	197	199	199	195	202	199	198	475	9,5	9,36	9,45	9,45	9,26	9,6	9,45	9,41	9,43	9,44
_	а	197	194	196	194	194	194	196	198	475	9,36	9,22	9,31	9,22	9,22	9,22	9,31	9,41	9,28	
7	b	197	198	195	195	197	195	196	197	475	9,36	9,41	9,26	9,26	9,36	9,26	9,31	9,36	9,32	9,3
	а	178	179	178	172	173	174	174	177	500	8,9	8,95	8,9	8,6	8,65	8,7	8,7	8,85	8,78	
8	b	173	173	171	172	172	175	175	179	500	8,65	8,65	8,55	8,6	8,6	8,75	8,75	8,95	8,69	8,73
	а	179	179	176	174	175	175	176	180	489	8,75	8,75	8,61	8,51	8,56	8,56	8,61	8,8	8,64	0.10
9	b	177	175	175	172	178	177	178	179	489	8,66	8,56	8,56	8,41	8,7	8,66	8,7	8,75	8,62	8,63
	а	177	177	176	175	173	175	177	180	490	8,67	8,67	8,62	8,58	8,48	8,58	8,67	8,82	8,64	
10	b	177	176	175	175	176	175	176	178	490	8,67	8,62	8,58	8,58	8,62	8,58	8,62	8,72	8,62	8,63
			-							I	Ĺ	1 · · · ·	· · ·		,		· · ·	· · · ·	,	

2.att. Virsmas pretestības mērīšanas iekārta Jandel ASMAT.

3. Monokristāliskā silīcija plāksnīšu Si-SiO2 starpslāņa robežas parametru novērtēšana.

Silīcija plāksnīšu Si-SiO₂ starpslāņa robežas īpašību salīdzināšana tika veikta ar voltfaradu raksturlīkņu metodi. Silīcija plāksnīšu paraugi vispirms tika tīrīti amonjaka peroksīda šķīdumā, mazgāti dejonizētā ūdenī un žāvēti. Pēc tam plāksnītes 1130^oC temperatūrā, sausā skābekļa vidē, tika pakļautas termiskai oksidēšanai. Termiskā oksīda biezums ir 100nm. Plāksnītēm ar uzaudzētu SiO₂ oksīdu, izmantojot fotolitogrāfiju, tika veidots alumīnija kontakts.

Voltfaradu raksturlīknes tika mērītas sprieguma diapazonā ± 10 V. Pētāmo silīcija plāksnīšu paraugu voltfaradu raksturlīknes ir dotas 3., 4., un 5.attēlā.

Apzīmējumi grafikos:

- Ut nogriešanas spriegums
- Ufb plakanās zonas spriegums
- Um horizontālās pieskares (maksimālās kapacitātes stāvoklī) un slīpās pieskares krustošanās punkts
- Qs pilna lādiņa blīvums, elektroni/cm²
- Us tiešās pārejas raksturlīknes slīpums

4.att. TOPSIL firmas p-tipa plāksnītes voltfaradu raksturlīkne

5.att. KEPP firmas p-tipa plāksnītes voltfaradu raksturlīkne

6.att. Voltfaradu raksturlīkņu mērīšanas iekārta.

4. Monokristāliskā silīcija plāksnīšu nepamata lādiņnesēju dzīves ilguma salīdzinošā novērtēšana.

Salīdzināšanai ir izraudzīta silīcija plāksnīšu nepamata lādiņnesēju dzīves ilguma pārbaude puktveida kontaktā, pielietojot vadītspējas modulācijas metodi (saskaņā ar ГОСТ 19658-81). Šajā metodē plāksnītes punktveida kontaktā, tiešajā virzienā, sūta divus laikā nobīdītus strāvas impulsus. Oscilogrāfa ekrānā var redzēt, ka impulsu sūtīšanas laikā, paraugā krīt spriegums. Sprieguma impulsa forma punktveida kontaktā, veicot vadītspējas modulāciju ar inžektējamiem nesējiem, shematiski parādīta 7.attēla.

Momentā, kad tiek padots pirmais (inžektējošais) impulss, paraugā ievada līdzsvara lādiņnesējus, kas palielina parauga vadītspēju. Inžektējošā impulsa beigās, rekombinācijas rezultātā, līdzsvara lādiņnesēju skaits samazinās. Iepriekš minētā dēļ kontakta pretestība atgriežas sākotnējā vērtībā un laika gaitā palielinās. Otra (mērīšanas) impulsa laikā spriegumu paraugā nosaka paraugā saglabājušos līdzsvara lādiņnesēju koncentrācija. Šādos gadījumos sprieguma kritums U₂, mērīšanas impulsa sākumā, būs impulsu aiztures laika funkcija t. Līdzsvara lādiņnesēju dzīves ilgumu τ aprēķina pēc formulas:

$$\tau = \frac{t}{2,3 \lg \Delta U}$$

Salīdzinošās novērtēšanas laikā mērījumi tika veikti plāksnīšu piecos punktos, kā arī tika aprēķināts to vidējais lielums. Līdzsvara lādiņnesēju dzīves ilguma mērīšanas iekārta ir izveidota no standartierīcēm (9.attēls).

Table 5.	Lifetime of minority carriers for waters with different types of conductivity														
Wafer type	Wafer specification	Lifeti	me o	f min	ority	carrie	erst,(measu	red on	10 wa	afers)				
n - type	4N0P X10109-A (TOPSIL)	38	22	20	27	25	30	20	38	22	22				
	4N0 3-9 460 (KEPP)	18	25	10	16	16	12	10	10	9	15				
n typo	4P1B X09149-0 (TOPSIL)	20	22	25	20	20	25	18	20	30	22				
p - type	4P1 7-13 460-20-5 (KEPP)	25	15	20	26	19	25	22	16	24	30				

 Table 3.
 Lifetime of minority carriers for wafers with different types of conductivity

Nepamata lādiņnesēju dzīves ilguma sadalījums uz plāksnītes.

8.att. Strāvas impulsu oscilogrāfiskais attēlojums

9.att. Nepamata lādiņnesēju dzīves ilguma mērīšanas iekārta

5. Monokristālisko silīcija plāksnīšu skābekļa, oglekļa un dzelzs daudzuma salīdzināmie dati.

Monokristāliskā silīcija plāksnītēs tika mērīts skābekļa (O₂), oglekļa (C) un dzelzs (Fe) daudzums. Mērījumi tika veikti ar sekundāro jonu masas spektrometrijas metodi – SIMS (Secondary Ion Mass Spectrometry). Mērījumus veica ar ION-TOF spektrometru.

4.tabula	
----------	--

Nr. p.k.	Silīcija marta	Parauga marķējums	O ₂ koncentrācija, cm ⁻³	C koncentrācija, cm ⁻³ .	Fe koncentrācija, cm ⁻³
1.	4N0P X10109-A	ТS-КЭФ-9	$6 \cdot 10^{17}$	$2,25 \cdot 10^{16}$	$2,25 \cdot 10^{16}$
2.	4P1B X09149-0	ТS-КДБ-9	6·10 ¹⁷	$2,25 \cdot 10^{16}$	$2,25 \cdot 10^{16}$
3.	4N0 3-9 460 (KEPP)	Т R- КЭФ-9	6,5·10 ¹⁷	2,88·10 ¹⁶	2,53·10 ¹⁶
4.	4P1 7-13 460- 20-5 (KEPP)	TR-КДБ-10	6,19·10 ¹⁷	$2,27 \cdot 10^{16}$	1,93·10 ¹⁶

6. Silīcija kvalitātes novērtēšana pusvadītāju struktūrās.

Silīcija kvalitāte tika vērtēta sērijveida izstrādājumu, operacionālo pastiprinātāju, izmēģinājumu partijā. Tā kā pastiprinātāji tiek izstrādīti, ņemot vērā, ka ir iespējama būtiska deviācija materiālu īpašībās un novirze tehnoloģiskajā procesā, iegūtie paraugi neparādīja būtisku atšķirību starp pētāmo (KEPP firmas) silīciju un "parasto" (TOPSIL Semiconductor Materials SA firmas) silīciju.

Lai veiktu precīzāku salīdzinošo novērtējumu, tika pieņemts lēmums veikt bipolāro tranzistoru voltampēru raksturlīkņu parametru vērtēšanu. Šim nolūkam pētījuma gaitā tika izstrādāta speciāla tranzistoru testa struktūra. Parametri tika vērtēti n-p-n tipa struktūrām.

n-p-n struktūras tranzistora šķērsgriezums redzams 10.attēlā.

10.att. n-p-n struktūras tranzistora šķērsgriezums

Tranzistoru konstruktīvie parametri

- emitera laukums	70 x 100 µm			
- bāzes laukums	90 x 300 µm			
- pasīvās bāzes biezums	3,0 µm, īpatnējā	pretestība	Rs = 130	$\Omega^* cm$
- emitera biezums	2,2 µm, īpatnējā	pretestība	Rs = 3,5	$\Omega^* cm$
- aktīvās bāzes				
pinch rezistora pretestība	15-20 Ω			

Plāksnīšu partija bija veidota no standarta plāksnītēm (TOPSIL firmas) un pētāmām plāksnītēm (KEPP firmas). Tādējādi visas iepriekš minētās plāksnītes tika pakļautas vienādiem procesiem. Pēc izgatavošanas plāksnītēs tika mērīts:

Strāvas pastiprināšanas koeficients Kolektora-emitera caursites spriegums Kolektora-bāzes caursites spriegums

Mērījumu rezultāti doti 5., 6.tabulā un histogrammās.

Table 5. Measurement of npn BJT manufactured on TOPSIL wafers

Parameter	Name									Wafe	ers 4N	0P X1	0109-	A									
Current amplification	h _{21E}	90	70	85	90	85	85	80	95	80	90	75	95	70	85	85	100	85	95	80	80	80	90
Break voltage Uce, V	Uce	70	70	67	70	68	68	67	70	70	70	68	65	65	65	65	67	67	68	68	69	68	67
Break voltage Ucb, V	Ucb	92	94	85	80	82	80	82	82	78	82	80	80	80	78	77	78	78	78	78	78	76	77

Table 6. Measurement of npn BJT manufactured on KEPP wafers

Parameter	Name	Wafers 4N0 3-9 460																					
Current amplification	h _{21E}	55	50	60	70	75	80	75	80	75	80	75	70	70	80	75	75	80	75	75	65	65	60
Break voltage Uce, V	Uce	70	71	69	69	70	71	70	70	70	70	69	69	70	70	71	69	70	69	73	73	71	72
Break voltage Ucb, V	Ucb	77	78	76	79	79	78	77	77	77	80	78	77	78	78	79	78	78	78	77	78	79	79

Secinājumi.

Veiktais firmas Topsil Semiconductor Materials SA un firmas KEPP plāksnīšu monokristāliskā silīcija parametru un kvalitātes salīdzinošais novērtējums parādīja, ka to silīcija kvalitāte un parametri ir vienā līmenī.

Firmas Kepp plāksnēm caursites spriegumu sadalījums ir manāmi mazāk "izplūdis", kas ļauj masveida ražošanā sagaidīt palielinātu procentuālo iznākumu.

Firmas KEPP monokristāliskā silīcija parametri un kvalitāte nav zemāka kā AS ALFA RPAR mikroshēmu un pusvadītāju ierīču ražošanā izmantojamā firmas TOPSIL silīcija kvalitāte un parametri.

Pilnīgākai silīcija kvalitātes novērtēšanai nepieciešams veikt plāksnīšu masveida pārbaudi sērijveida ražošanā. Ir jāvērtē to tehniski ekonomiskie rādītāji, drošums un izgatavoto pusvadītāju ierīču un mikroshēmu ilgizturība.