

EIROPAS SAVIENĪBA

Eiropas Reģionālās attīstības fonds

TAVĀ IEGULDĪJUMS ΝĀΚΟΤΝĒ

Informatīvais ziņojums par ERAF projektā No. 1.1.1.1/16/A/203, "Daudzslāņu silīcija nanokondensators ar uzlabotiem dielektriskiem slāņiem" paveikto laika posmā 01.08.2018.-31.10.2018.

Pārskata periodā veikti sekojošie pētījumi:

Analizēti Si-SiO₂-Si₃N₄ paraugi, kuros Si₃N₄ nano slānis iegūts, izmantojot reaktīvās 1. gāzes ar samazināto skābekļa saturu. Izmērīti fotoelektronu (FE) un termostimulētās eksoelektronu emisijas (TSEE) spektri pēc paraugu karsēšanas un apstarošanas ar jonizējošo starojumu. Pēc sākotnējiem FE un TSEE mērījumiem katru paraugu atkvēlināja temperatūrā +500 °C un pēc tam apstaroja ar gamma starojumu (1 kGy doza). FE un TSEE spektrus detektēja pēc katra apstrādes posma. Tabulā 1 sniegts pārskats par izmērītajiem paraugiem, apstrādes posmiem un atbilstošām fotoelektronu izejas darba vērtībām. Vidēji, izejas darba vērtības (1.attēls) pieauga pēc atkvēlināšanas (+0.05 eV) un gamma starojuma (+0.04 eV). Turklāt, izejas darbs ir lielāks 20 nm biezam Si₃N₄ nekā 60 nm biezam Si₃N₄.

vērtības								
	Materiāls	Si₃N₄ biezums (nm)	Si₃N₄ slāņu skaits	Analizēto paraugu ("čipu") skaits	Vidējais fotoelektriskais izejas darbs (eV)			
Paraugs					Sākumā	Pēc	Pēc	
						nāšanas	šanas	
60-2-5	Si-SiO2-Si3N4	60	5	2	4.80	4.86	4.82	
60-2-4	Si-SiO2-Si3N4	60	1	2	4.84	4.89	4.95	
20-2- 5	Si-SiO2-Si3N4	20	3	2	4.88	4.89	4.87	
20-2- 4	Si-SiO2-Si3N4	20	1	2	4.86	4.91	5.03	
	Visu paraugu vidējais	-	-	8	4.84±0.1	4.89±0.1	4.93±0.1	

TSEE gadījumā atkvēlināšana samazināja gan elektronu emisijas maksimumu skaitu gan elektronu emisijas intensitāti kopumā (2. attēls). Tas varētu liecināt par to, ka termiskajā iedarbībā samazinās Si₃N₄ aizliegtajā zonā esošo elektronu kērajcentru skaits. Pēc apstarošanas ar gamma starojumu tika novērots TSEE signāla pieaugums. Tas var liecināt par sākotnēji neaktīvo elektronu kērajcentru aktivāciju gamma starojuma iedarbībā. Pašlaik tiek gatavoti jauni paraugi turpmākai gamma starojuma iedarbības izpētei.

Tabula 1 Si SiOn SinN, paraugu fotoelektriskā izeias darba

2.attēls. Si-SiO₂-Si₃N₄ paraugu TSEE spektri pēc katra apstrādes soļa.

2. Si-SiO₂-Si₃N₄ paraugi ar dažādiem Si₃N₄ biezumiem (*d*, nm) tika apstaroti ar vājiem elektroniem, kuru enerģija ir 100–1000 eV, un pēc apstarošanas tika reģistrēta paraugu FE strāva (*I*, el/s) atkarībā no emisiju ierosinošās gaismas kvantu enerģijas (*E*, eV). Pēc apstarošanas ar vājiem elektroniem fotoelektronu emisijas spektros parādījās maksimumi (3.(a) attēls).

 attēls. Si-SiO₂ un Si-SiO₂-Si₃N₄ paraugu fotoelektronu emisijas spektri pēc apstarošanas ar vājo elektronu starojumu: (a) salīdzinājums starp Si₃N₄ dažādiem biezumiem un SiO₂; (b) vienslāņa Si-SiO₂-Si₃N₄ paraugi ar Si₃N₄ biezumu 60 nm no dažādām sintēzes sērijām.

Viens no iespējamiem skaidrojumiem par šo maksimumu izcelsmi ir Ožē elektronu emisija no SiO₂ punktveida defektu stāvokļiem. Si-SiO₂ paraugiem maksimumi veidojas pie E=5,04 eV; 5,33 eV; 5,70 eV; 6,03 eV. Kad Si₃N₄ slāņa biezums ir d=20 nm un 40 nm, maksimumu pozīcija nobīdās par 0,1–0,2 eV uz augstāko enerģiju pusi. Pie d=60 nm maksimumu enerģija kļūdas robežās (± 0,05 eV) neatšķiras no SiO₂ maksimumu enerģijas.

Pie d=100 nm samazinās maksimumu intensitāte pie E = 5,4 eV un 6,0 eV (3.(a) attēls). Emisijas maksimums pie 5,4 eV ir saistīts ar O₂ ievadīšanu uz virsmas (surface peroxy radical), bet emisijas maksimums pie 6,0 eV – ar nekompensēto saišu E` centriem uz silīcija virsmas (silicon surface dangling bond E` centers). Tādējādi fotoelektronu emisija pie šīm fotonu enerģijām ir saistīta ar defektu stāvokļiem uz SiO₂-Si₃N₄ robežvirsmas.

Tika salīdzināts vienslāņa un daudzslāņa Si₃N₄. Maksimumu enerģija šiem paraugiem sakrīt kļūdu robežās gan paraugu 1. sērijā, kurā Si₃N₄ ir iegūts, izmantojot reaktīvās gāzes ar paaugstināto skābekļa saturu, gan paraugu 2. sērijā, kurā Si₃N₄ ir iegūts, izmantojot reaktīvās gāzes ar samazināto skābekļa saturu.

Vienslāņa Si₃N₄ paraugiem ar d=40 nm un d=60 nm novēroja maksimumu enerģijas nobīdi par 0,1 eV uz augstāko enerģiju pusi paraugu 1. sērijai salīdzinājumā ar 2. sēriju (3.(b) attēls). Ja d=20 nm, kļūdu robežās nobīdes nav. Tas varētu būt saistīts ar skābekļa klātbūtni 1. sērijas Si₃N₄ slāņos. Daudzslāņa Si₃N₄ paraugiem nav novērota maksimumu nobīde starp sērijām.

3. Turpināta ķīmisko saišu un elektronu ķērajcentru analīze Si₃N₄ slāņos, kas izgatavoti, izmantojot reaktīvās gāzes ar samazināto skābekļa saturu. Tika salīdzināti vienslāņa un daudzslāņa Si₃N₄ infrasarkanās (IS) absorbcijas spektri, kas iegūti, no Si-SiO₂-Si₃N₄ spektra matemātiski atņemot Si-SiO₂ spektru (SiO₂ slāņa biezums sastādīja 1000 nm) (4.(a) attēls). Tādi paši spektri uzņemti Si₃N₄ slāņiem, kas bija 20 minūtes apstaroti ar UV starojumu 20 cm attālumā no gaismas avota izejas (Hamamatsu LC8 UV avots) (4.(b) attēls). Veikta apstarotu un neapstarotu paraugu spektru salīdzināšana un novērots, ka pēc UV apstarošanas silīcija nitrīdā pastāv elektronu ķērajcentri, kas atšķiras vienslāņa un daudzslāņu Si₃N₄ gadījumā.

 4. attēls. Si₃N₄ slāņu, kas izgatavoti ar reaktīvām gāzēm ar samazināto skābekļa saturu, IS absorbcijas spektri, kur MNL2 – vienslāņa Si₃N₄ ar biezumu 60 nm, MSiN2 – 5 slāņu Si₃N₄ ar kopējo biezumu 60 nm: (a) pirms apstarošanas ar UV starojumu; (b) pēc apstarošanas ar UV starojumu.

4. Tika mērīti nanokondensatoru elektriskie parametri: kapacitāte (*C*), dielektrisko zudumu leņķa tangenss (tg δ), caursites spriegums (U_{caur}). Mērīšanas punkti bija vienmērīgi sadalīti pa plāksnes virsmu. Mērījumi veikti pie divām frekvencēm – 10 kHz un 1MHz. Izmērīti nanokondensatori bija ar 20, 40, 60 nm biezu vienslāņa Si₃N₄ dielektriķi un tāda paša biezuma daudzslāņu dielektriķi. Nanokondensatoriem ar daudzslāņu dielektriķi gan kapacitāte (5. attēls) gan zudumu leņķis (6. attēls) ir mazāki nekā nanokondensatoriem ar vienslāņa dielektriķi. Caursites spriegums ir lielāks daudzslāņu kondensatoriem (7. attēls).

Pēc mērījumiem nanokondensatorus sakarsēja līdz +200 °C un atkārtoti izmērīja. No rezultātiem izrēķināja parametru temperatūras koeficientu. Tabula 2 parādīts kapacitātes temperatūras koeficients, tabulā 3 parādīts tg δ temperatūras koeficients. Iegūtie lielumi rāda, ka vienslāņa un daudzslāņu kondensatori temperatūrā izmainās vienādi.

5. attēls. Kapacitāte vienslāņa un daudzslāņu kondensatoriem ar Si₃N₄ biezumiem 20, 40, 60 nm.

6. attēls. Dielektrisko zudumu leņķa tangenss vienslāņa un daudzslāņu kondensatoriem ar Si₃N₄ biezumiem 20, 40, 60 nm.

7. attēls. Caursites spriegums vienslāņa un daudzslāņu kondensatoriem ar Si3N4 biezumiem 20, 40, 60 nm.

Tabula 2. Kapacitātes temperatūras koeficients vienslāņa un daudzslāņu kondensatoriem ar Si₃N₄ biezumiem 20, 40, 60 nm.

	Kapacitātes temperatūras koeficients, ppm/°C							
	20 nm		40) nm	60 nm			
	Vienslāņa	Daudzslāņu	Vienslāņa	Daudzslāņu	Vienslāņa	Daudzslāņu		
10 kHz	87	86	87	92	87	92		
1 MHz	29	-15	-12	4	53	69		

	tg δ temperatūras koeficients, ppm/°C						
	20 nm		40	nm	60 nm		
	Vienslāņa	Daudzslāņu	Vienslāņa	Daudzslāņu	Vienslāņa	Daudzslāņu	
10 kHz	1699	1700	1932	2028	2017	2358	
1 MHz	1183	753	786	867	853	901	

Tabula 3. tg δ temperatūras koeficients vienslāņa un daudzslāņu kondensatoriem ar Si₃N₄ biezumiem 20, 40, 60 nm.

Dalība starptautiskās konferencēs:

- 1. Pajuste, E., Romanova, M., Avotiņa, L., Enichek, G., Zaslavskis, A., Kinerte, V., Dehtjars, J., Ķizāne, G. Surface morphology of single and multilayered silicon nitride dielectric nanocoatings. *Book of Abstracts of 20th International Conference-School "Advanced Materials and Technologies"*, Lithuania, Palanga, 27-31 August, 2018, p.43.
- Avotiņa, L., Pajuste, E., Romanova, M., Zaslavskis, A., Enichek, G., Kinerte, V., Dehtjars, J., Ķizāne, G. Modifications of silicon nitride bonds under action of accelerated electrons. *RACIRI 2018 Summer School: Participants' Abstracts*, Germany, Rügen, 25 Aug-1 Sep., 2018, p.4.
- Yu. Dekhtyar, L. Avotina, G. Enichek, M. Romanova, B. Schmidt, E. Shulzinger, H. Sokokins, A. Vilken, A. Zaslavski. Interface of silicon nitride nanolayers with oxygen deficiency. *Proceedings of the 16th Biennial Baltic Electronics Conference (BEC2018)*, Tallinn, Estonia, October 8-10, 2018. (SCOPUS, IEEE Xplore)
- T. Yager, M. Romanova, Yu. Dekhtyar, A. Zaslavskis, G. Enichek, G. Kizane. Influence of manufacturing technology and ionizing radiation on electron emission properties of Si₃N₄ dielectric nanolayers. *Riga Technical University 59th International Scientific Conference*, October 11, 2018, Riga, Latvia.

Par projekta īstenošanu un rezultātiem tika stāstīts studiju kursā studentiem:

RTU maģistra profesionālās studiju programmas "Medicīnas inženierija un fizika" studiju kurss MMK216 "Mūsdienu fizika inženierzinātnē", lekcijas datums 30.10.2018, tēma "Nanotehnoloģijas". Tika stāstīts par nanokondensatora ar Si₃N₄ dielektrisko nanoslāni izgatavošanas tehnoloģiju un dielektriskā nanoslāņa morfoloģijas, ķīmiskā sastāva un apslēpto elektrisko centru raksturošanas metodēm.

Publicēts 23.11.2018.