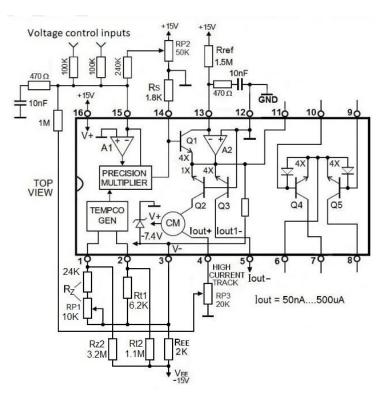
# AS3341 - linear in dB temperature compensated voltage controlled current source (VCCS)

- controlled range till 14 octave
- fully temperature compensated
- summing node inputs for current control
- matched differential NPN pair
- high exponential scale accuracy

#### APPLICATIONS

- stabilized current sources
- MOOG-type filters
- for electronic music

## **General Description**


AS3341 is a voltage controlled current source with internal temperature compensation and a matched pair of NPN transistors. Current source uses a temperature-compensated core of the VCO AS3340, with an exponential and linear control scale.

The output current lout- can be varied within a wide range from 50 nA to 500  $\mu$ A. AS3341 also has a current output lout + = 1 / 4lout- which can be used to compensate for the linearity of the control characteristic for a large output current lout-.

#### AS3341 Pin Information

### Fig.1 AS3341 Circuit Block and Connection Diagram

| SOIC-16<br>Pin No | Pin<br>Name | Description                             |  |  |
|-------------------|-------------|-----------------------------------------|--|--|
| 1                 | I_Ref       | Reference current adjust                |  |  |
| 2                 | I_Temp      | Temperature dependent<br>current adjust |  |  |
| 3                 | VEE         | Negative supply                         |  |  |
| 4                 | lout+       | High current track (source)             |  |  |
| 5                 | lout-       | Output current (sink)                   |  |  |
| 6                 | CE          | Common emitter Q4,Q5                    |  |  |
| 7                 | CQ4         | Collector Q4                            |  |  |
| 8                 | CQ5         | Collector Q5                            |  |  |
| 9                 | BQ5         | Base of Q5                              |  |  |
| 10                | BQ4         | Base of Q4                              |  |  |
| 11                | EQ1         | Emitter of Q1                           |  |  |
| 12                | GND         | Ground                                  |  |  |
| 13                | IRefIn      | Current Reference Input                 |  |  |
| 14                | Vs          | Scale                                   |  |  |
| 15                | lc          | Current control input                   |  |  |
| 16                | Vcc         | Positive supply                         |  |  |





AS3341D



# **Absolute Maximum Ratings**

| Voltage Between Vcc and VEE Pins                  | +24V, -0,5V     |  |  |
|---------------------------------------------------|-----------------|--|--|
| Voltage Between Vcc and GND Pins                  | +18V, -0,5V     |  |  |
| Voltage Between VEE and GND Pins                  | -6V, +0,5V      |  |  |
| Current through Any Pin                           | ±40mA           |  |  |
| Voltage Between Current Control Pin               | ±6V             |  |  |
| or Reference Current Pin and GND Pin              |                 |  |  |
| Voltage Between Multiplier Output Pin and GND Pin | +6V, -1V        |  |  |
| Storage Temperature Range                         | - 55°C to 120°C |  |  |
| Operating Temperature Range                       | - 25°C to 75°C  |  |  |
|                                                   |                 |  |  |

#### Electrical Characteristics

 $V_{CC}$ =+15V  $V_{EE}$  = Internal Zener  $T_A$ = 20°

| Deveneter                                                                   | Min   | T   | Max   | Linite   |
|-----------------------------------------------------------------------------|-------|-----|-------|----------|
| Parameter                                                                   | Min   | Тур | Max   | Units    |
| Output current range, lout-                                                 | 0.05  | -   | 500   | μA       |
| Maximum output current , lout-                                              | 500   | 600 | 700   | μA       |
| Control voltage range, with trimming 1)                                     | 0     | -   | 10    | V        |
| Control voltage tracking, with trimming 1)                                  |       | 1   |       | V/octave |
| Control current for maximum output current                                  |       | 150 |       | μA       |
| Control current for minimal output current                                  |       | 0   |       | μA       |
| Input current, reference current                                            | 80    | 200 | 400   | nA       |
| Input current, output current control                                       | 80    | 200 | 400   | nA       |
| Tempco of input current                                                     | -1000 | -   | +1000 | ppm      |
| Uoffset, reference current input                                            | -5    | -   | +5    | mV       |
| Uoffset, output current control                                             | -5    | -   | +5    | mV       |
| Rout (lout-)                                                                |       | 10  | -     | MΩ       |
| Uout max (on lout-)                                                         | -0.2  | -   | +10   | V        |
| Positive supply, Vcc                                                        | 10    | 12  | 18    | V        |
| Negative supply, Vee 3)                                                     | -4.7  | -6  | -18   | V        |
| Current consumption, Icc                                                    | 2.0   | 2.5 | 3.5   | mA       |
| Current consumption, lee 2)                                                 | 2.0   | 2.5 | 3.5   | mA       |
| Matched NPN pair                                                            |       |     |       |          |
| $H_{FE}$ ( $U_{CB} = 0V$ till $U_{max}$ , $I_C = 100 \ \mu A$ )             |       | 200 |       |          |
| Matching of $H_{FE}$ ( $U_{CB} = 0V$ till $U_{max}$ , $I_C = 100 \ \mu A$ ) |       | 0.5 | 2     | %        |
| U BE offset (UCB = 0V, Ic = from 10 $\mu$ A till 1 mA 5)                    | -     | 100 | 200   | μV       |
| $U_{CE}$ saturation (I <sub>C</sub> = 1 mA, I <sub>B</sub> = 100 $\mu$ A 6) |       |     | 0.25  | V        |

Notes:

1. With 100K resistor at the output current control input

2. With a negative supply voltage of -6 V

3. If the negative supply voltage is more than -7 V, a current-limiting resistor is required.

4. UCB = 0V to Umax, Ic = 100  $\mu$ A

5. UCB = 0V, Ic = 10  $\mu$ A to 1 mÅ

6. lc = 1 mA, IB = 100 uA

Specifications subject to change without notice.

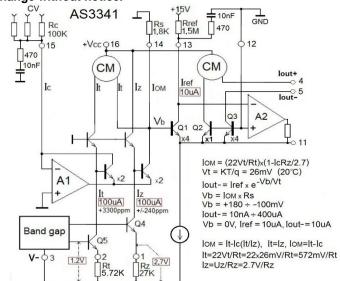



Fig.2 Structure of AS3341 multiplication block and exponentiator



#### **Application information**

AS3341 uses a temperature-compensated core of the VCO AS3340, with an exponential and linear control scale. The output current lout- can be varied within a wide range from 50 nA to 500  $\mu$ A.

Current output lout+ = lout- /4 can be used to compensate non-linearity of the control characteristic for a large output current lout-, as shown in Fig. 1 by potentiometer RP3.

Control voltages are fed through a 100 k $\Omega$  input resistors to the control input pin 15 (summing current node). The 240 k $\Omega$  resistor from the control input must be connected to a stable voltage source. This resistor sets the initial value of the output current when there is no control voltage (240 k $\Omega$  resistor connected to RP2 potentiometer connected to + Vcc Fig.1).

Control voltage range can be set from 0 to 10 V as shown in Fig. 1, and set the standard output current control voltage step to 1 V / octave. Several control signals can be applied simultaneously to the control input through summing resistors so that the total current through them is not negative and does not exceed +200  $\mu$ A.

Maximum output current lout- is 550  $\mu$ A. The most accurate part of the output current range is from 100 nA to 200  $\mu$ A.

Voltage at pin 2 of the AS3341 is 0.572 V relative to the negative supply voltage at pin 3. Resistor Rt sets the current at pin 2 to approximately 100  $\mu$ A. The voltage at pin 1 is 2.7 V relative to pin 3. By adjusting the potentiometer RP1, as shown in Fig. 1, the total resistance of the resistor Rz is set so, that at pin 1 a current of 100  $\mu$ A is also obtained.

Reference current lref is supplied to the reference current input pin 13 RefIn through the reference resistor Rref connected to a stable voltage source. The reference current can be selected from 5 to 15  $\mu$ A. The recommended typical current value lref = 10  $\mu$ A, then at zero based on the Q1 transistor (pin 14), the output current of the lout- microcircuit will be 10  $\mu$ A. This can be obtained with a control voltage CV = 5 V. The value of the output current lout can be fine-tuned with the RP2 potentiometer. The current reference input can also be used to linearly control the output current.

An on-chip 7.4 volt Zener diode allows the device to operate off  $\pm 15$  volt supplies, as well as  $\pm 12$ , -5 volt supplies. For voltages greater than -7.4 volts, a series current limiting resistor R<sub>EE</sub> must be added between pin 3 and the negative supply. Its value is calculated as follows:

 $R_{EE} = (V_{EE} - 7.4) / 0.004.$ 

For example, with  $V_{EE} = -12$  V, the resistance of the R<sub>EE</sub> resistor can be set to 1.2K.

To minimize self-heating and improve thermo-stability it is recommended to keep  $V_{EE} = -5 V...-6 V$  (external power supply). External  $V_{EE}$  also minimize current through GND and improves stability.

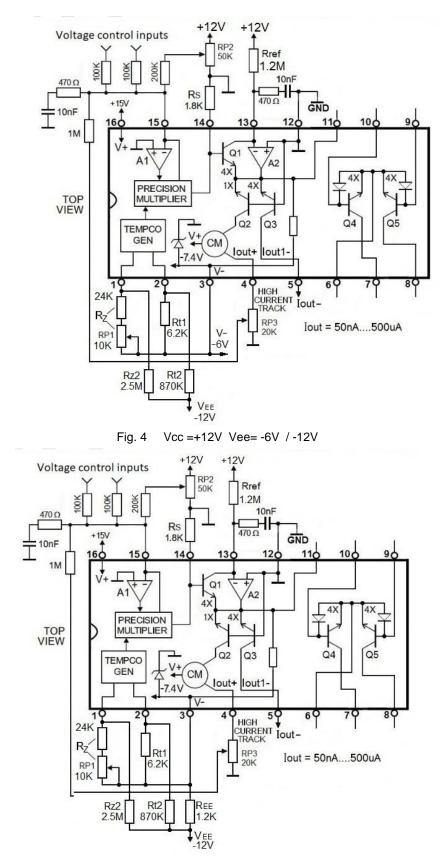



Fig. 3 Vcc =+15V Vee= -15V

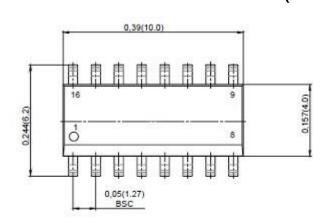


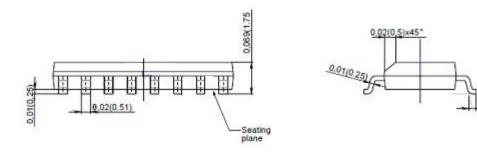
To improve and adjust temperature compensation fine trimming of TempCo must be used. I\_temp (pin 2) total current ~ 100  $\mu$ A must be composed from two parts – current through R<sub>T</sub>1 (approximately 92  $\mu$ A) and current through R<sub>T</sub>2 (approximately 8  $\mu$ A) connected between external voltage source and pin2 (I\_Temp). R<sub>T</sub>1 organizes the main part of thermal compensation, and R<sub>T</sub>2 allows it to finely adjust to several tenth of ppm/C°. For improving stability depending on – Vee , resistor RZ2 must be used. In this case, fluctuations of -Vee simultaneously affect both control inputs I\_ref (Pin1) and I\_temp (Pin 2).

Examples of such applications for different supply voltages are shown on Fig.1, 3, 4, 5.






0,016(0.4)


Fig.5 Vcc =+12V Vee= -12V

Package Information.

| Device type | Package                   |
|-------------|---------------------------|
| AS3341D     | SOIC-16 (150 Mil <b>)</b> |

Units: inch (mm) SOIC-16 (150 Mil)





| Date        | Revision | Changes                  |
|-------------|----------|--------------------------|
| 04-May-2021 | 1        | Preliminary version 1    |
| 09-Jun-2021 | 2        | Trimming of TempCo added |